[9]Norihiro Nakashima and Shuhei Tsujie,
Enumeration of Flats of the Extended Catalan and Shi Arrangements with Species,
J. Integer Sequences, Volume 24, Issue 9, Article 21.9.2 Sep. 30 2021.   arXiv:1904.09748

[8]Takuro Abe and Norihiro Nakashima,
A characterization of high order freeness for product arrangements and answers to Holm's questions,
Algebr. Represent. Theory., Volume 24, Issue 4, pp. 585-599, June 2021. (online 04 Apr. 2020)   arXiv:1705.07417

[7]Akihiro Higashitani, Ryosuke Mineyama, and Norihiro Nakashima,
Distribution of accumulation points of roots for type $(n-1,1)$ Coxeter groups,
Nagoya Math. J., Volume 235, pp. 127-157, Sep. 2019. (online 01 Mar. 2018)   arXiv:1212.6617

[6]Norihiro Nakashima, Hiroaki Terao, and Shuhei Tsujie,
Canonical systems of basic invariants for unitary reflection groups,
Canad. Math. Bull. Volume 59, No. 3, pp. 617-623, Sep. 2016.   arXiv:1310.0570

[5]Norihiro Nakashima and Hajime Matsui,
Decoding of Projective Reed-Muller Codes by Dividing a Projective Space into Affine Spaces,
IEICE Trans, Fundamentals, Volume E99-A, No. 3, pp. 733-741, Mar. 2016. Journal page   arXiv:1412.4365

[4]Norihiro Nakashima,
Modules of differential operators of order 2 on Coxeter arrangements,
Algebr. Represent. Theory, Volume 17, Issue 4, pp. 1163-1180, Aug. 2014. doi:10.1007/s10468-013-9440-0   arXiv:1111.6712

[3]Norihiro Nakashima and Shuhei Tsujie,
A canonical system of basic invariants of a finite reflection group,
J. Algebra, Volume 406, pp. 143-153, May 2014. doi:10.1016/j.jalgebra.2014.02.012   arXiv:1211.6026

[2]Norihiro Nakashima,
The Noetherian Properties of the Rings of Differential Operators on Central 2-Arrangements,
Comm. Algebra, Volume 41, Issue 6, pp. 2114-2131, May 2013. doi:10.1080/00927872.2012.654415

[1]Norihiro Nakashima, Go Okuyama, and Mutsumi Saito,
The Freeness and Minimal Free Resolutions of Modules of Differential Operators of a Generic Hyperplane Arrangement,
J. Algebra, Volume 351, Issue 1, pp. 294-318, Feb. 2012. doi:10.1016/j.jalgebra.2011.10.042


[3]Yusuke Mori and Norihiro Nakashima,
Characteristic quasi-polynomials for deformations of Coxeter arrangements of types A, B, C, and D,
Preprint. arXiv:2208.00735

[2]Norihiro Nakashima and Shuhei Tsujie,
Freeness for restriction arrangements of the extended Shi and Catalan arrangements,
Preprint. arXiv:2111.03585

[1]Norihiro Nakashima,
High order free hyperplane arrangements in 3-dimensional vector spaces,
Preprint. arXiv:1903.03249


iA.V. ƒ{ƒƒrƒbƒNCA. ƒ{ƒƒrƒbƒN@’˜@¬—Ρ ‰λlC“©ŽR ‘ε•γC’Λ–{ –υ”VC’†“‡ ‹K”ŽC“Œ’J ΝOC—δŽR —Η‰ξ@–σj
ŠΫ‘Po”Ε CISBN: 9784621089620CAug. 2015C222pp. (translation)


EN. Nakashima, H. Matsui,
A Decoding Algorithm for Projective Reed-Muller Codes of 2-Dimensional Projective Space with DFT,
2014 International Symposium on Information Theory and its Applications,
Melbourne, Australia, Oct 26-29, 371-375, 2014. (peer-reviewed conference)

EN. Nakashima,
Bases for modules of differential operators of order 2 on the classical Coxeter arrangements,
The 24th International Conference on Formal Power Series and Algebraic Combinatorics,
Nagoya University, 375-386, July 31, 2012 (peer-reviewed conference)

EN. Nakashima,
A basis for the module of differential operators of order 2 on the braid hyperplane arrangement,
”—‰πΝŒ€‹†Šu‹†˜^1795, 135-143, 2012.

EN. Nakashima,
The Noetherian properties of the rings of differential operators on central 2-arrangementst,
Proceedings of the 44th Symposium on Ring Theory and Representation Theory, Symp. Ring Theory Represent. Theory Organ. Comm., Nagoya, 132-135, 2012.